Genotype Imputation

Biostatistics 666

Previously

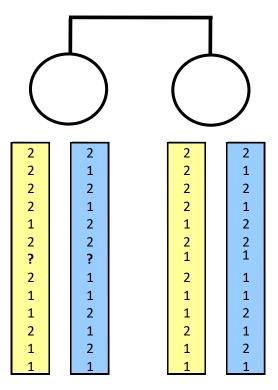
- Hidden Markov Models for Relative Pairs
 - Linkage analysis using affected sibling pairs
 - Estimation of pairwise relationships

- Identity-by-Descent
 - Relatives share long stretches of chromosome
 - Sharing at some markers can be used as surrogate for sharing at unobserved markers

Today

- Genotype Imputation / "In Silico" Genotyping
 - Use genotypes at a few markers to infer genotypes at other unobserved markers
- Closely related individuals
 - Long segments of identity by descent
- Distantly related individuals
 - Shorter segments of identity by descent

Intuition

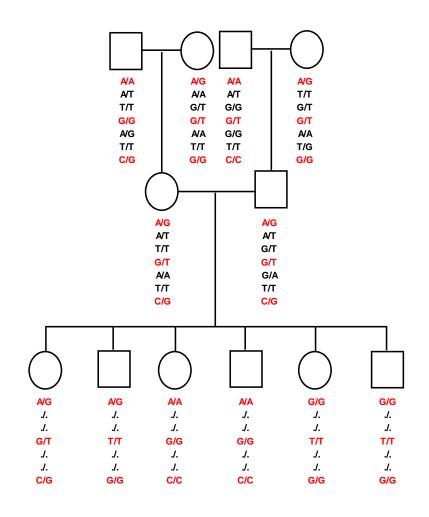


Given the above pedigree, what are the likely values of the genotype marked ?/? ...?

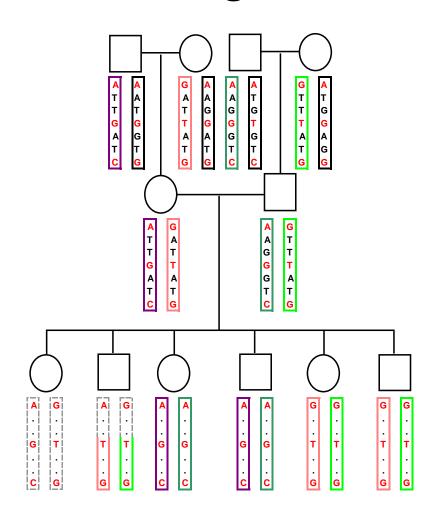
In Silico Genotyping For Family Samples

- Family members will share large segments of chromosomes
- If we genotype many related individuals, we will effectively be genotyping a few chromosomes many times
- In fact, we can:
 - Genotype a few markers on all individuals
 - Identify shared segments of haplotypes
 - Genotype additional markers on a subset of individuals
 - Fill in missing genotypes that fall in shared segments
 - Even without information on shared segments, it may be possible to learn about genotypes of relative members

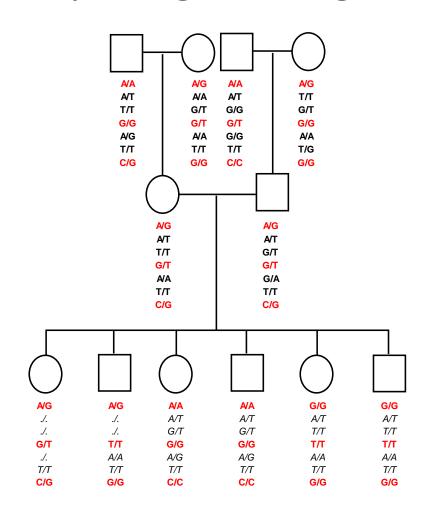
Genotype Inference Part 1 – Observed Genotype Data



Genotype Inference Part 2 – Inferring Allele Sharing



Genotype Inference Part 3 – Imputing Missing Genotypes



Genotype Imputation in Families

- Suppose a particular genotype g_{ii} is missing
 - Genotype for person i at marker j
- Consider full set of observed genotypes G
- Evaluate pedigree likelihood L for each combination of $\{G, g_{ii} = x\}$
- Posterior probability that $g_{ij} = x$ is

$$P(g_{ij} = x | G) = \frac{L(G, g_{ij} = x)}{L(G)}$$

- For pairs, same HMM as for linkage analysis or checking relatedness.
- Large pedigrees, Lander-Green (1987) or Elston-Stewart (1972) algorithm.

Standard Linear Model for Genetic Association

Model association using a model such as:

$$E(y_i) = \mu + \beta_g g_i + \beta_c c_i + \cdots$$

- y_i is the phenotype for individual i
- g_i is the genotype for individual i
 - Simplest coding is to set g_i = number of copies of the first allele
- c_i is a covariate for individual i
 - Covariates could be estimated ancestry, environmental factors...
- β coefficients are estimated covariate, genotype effects
- Model is fitted in variance component framework

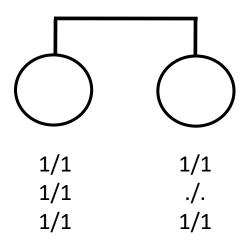
Model With Inferred Genotypes

Replace genotype score g with its expected value:

$$E(y_i) = \mu + \beta_g \bar{g} + \beta_c c + \cdots$$

- Where $\bar{g}_i = 2P(g_i = 2|G) + P(g_i = 1|G)$
- Association test can then be implemented in variance component framework, just as before
- Alternatives would be to
 - (a) impute genotypes with large posterior probabilities; or
 - (b) integrate joint distribution of unobserved genotypes in family

Example I



•
$$L(G) = .0061$$

•
$$L(G, g_{22} = 1/1) = .00494$$

•
$$L(G, g_{22} = 1/2) = .00110$$

•
$$L(G, g_{22} = 2/2) = .00006$$

Assumptions:

- Two alleles per marker
- Equal allele frequencies

$$-\Theta=0$$

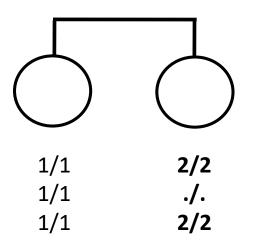
•
$$P(g_{22} = 1/1|G) = 0.81$$

•
$$P(g_{22} = 1/2 | G) = 0.18$$

•
$$P(g_{22} = 2/2 | G) = 0.01$$

•
$$\bar{g} = 1.80$$

Example II



•
$$L(G) = .000244$$

•
$$L(G, g_{22} = 1/1) = .000061$$

•
$$L(G, g_{22} = 1/2) = .000122$$

•
$$L(G, g_{22} = 2/2) = .000061$$

- Two alleles per marker
- Equal allele frequencies

$$-\Theta=0$$

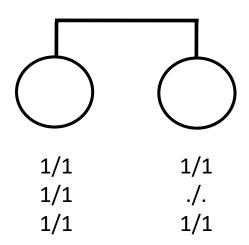
•
$$P(g_{22} = 1/1|G) = 0.25$$

•
$$P(g_{22} = 1/2 | G) = 0.50$$

•
$$P(g_{22} = 2/2 | G) = 0.25$$

•
$$\bar{g} = 1.00$$

Example III



•
$$L(G) = .0054$$

•
$$L(G, g_{22} = 1/1) = .00392$$

•
$$L(G, g_{22} = 1/2) = .00136$$

•
$$L(G, g_{22} = 2/2) = .00012$$

Assumptions:

- Two alleles per marker
- Equal allele frequencies

$$-\Theta=0.10$$

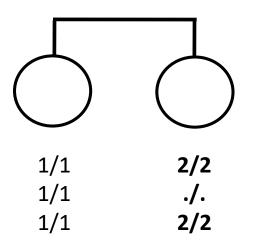
•
$$P(g_{22} = 1/1|G) = 0.73$$

•
$$P(g_{22} = 1/2 | G) = 0.25$$

•
$$P(g_{22} = 2/2 | G) = 0.02$$

•
$$\bar{g} = 1.70$$

Example IV



•
$$L(G) = .000121$$

•
$$L(G, g_{22} = 1/1) = .000033$$

•
$$L(G, g_{22} = 1/2) = .000061$$

•
$$L(G, g_{22} = 2/2) = .000028$$

- Two alleles per marker
- Equal allele frequencies

$$-\Theta = 0.10$$

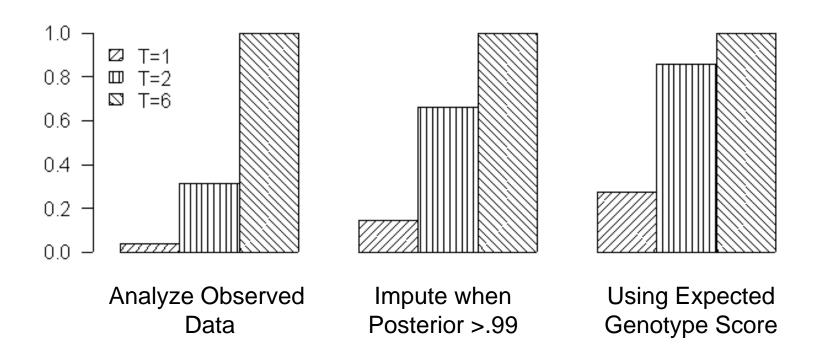
•
$$P(g_{22} = 1/1|G) = 0.273$$

•
$$P(g_{22} = 1/2 | G) = 0.499$$

•
$$P(g_{22} = 2/2 | G) = 0.227$$

•
$$\bar{g} = 1.05$$

Power in Sibships of Size 6 Without Parental Genotype Data



T is the number of genotyped offspring. QTL explains 5% of variance, polygenes explain 35%, 250 sibships, $\alpha = 0.001$.

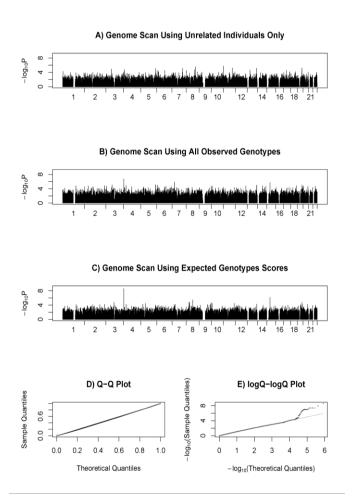
Application: Gene Expression Data

• Cheung et al (2005) carried out a genome wide association with 27 expression levels as traits

 Measured in grandparents and parents of CEPH pedigrees and took advantage of HapMap I genotypes

SNP consortium genotypes also available for ~6000
 SNPs in the offspring of each CEPH family

Example: Gene Expression Data



- Panels show GWA scan with CTBP1 expression as outcome
 - Gene is at start of chromosome 4
- Using observed genotypes, most significant association maps in cis for 15/27 traits
 - 12 of these reach p < 5 * 10⁻⁸
- Using inferred genotypes, most significant association maps in cis for 19/27 traits
 - 15 of these reach p < 5 * 10⁻⁸
- Data from Cheung et al. (2005)

Point of Situation...

- When analyzing family samples ...
- FOR INDIVIDUALS WITH KNOWN RELATIONSHIPS
 - Impute genotypes in relatives
 - Imputation works through long shared stretches of chromosome
- But the majority of GWAS that use "unrelated" individuals...
- FOR INDIVIDUALS WITH UNKNOWN RELATIONSHIPS
 - Impute observed genotypes in relatives
 - Imputation works through short shared stretches of chromosome

In Silico Genotyping For Unrelated Individuals

- In families, long stretches of shared chromosome
- In unrelated individuals, shared stretches are much shorter
- The plan is still to identify stretches of shared chromosome between individuals...
- ... we then infer intervening genotypes by contrasting samples typing at a few sites with those with denser genotypes

Observed Genotypes

Observed Genotypes

Reference Haplotypes

Study Sample

HapMap

Identify Match Among Reference

Observed Genotypes A A A . . . Reference Haplotypes CGAGATCTCCTTCTG C G A G A T C T C C C G A C C T C A T G G CGAGACTCTCCGACCTTATGC T G G G A T C T C C C G A C C T C A T G CGAGATCTCCCGACCTT CGAGACTCTCCGACCTCGTGC

Phase Chromosome,
Impute Missing Genotypes

Observed Genotypes

```
c g a g A t c t c c c g A c c t c A t g g
c g a a G c t c t t t t C t t t c A t g g
```

Reference Haplotypes

```
C G A G A T C T C C T T C T T C T G T G C

C G A G A T C T C C C G A C C T C A T G G

C C A A G C T C T T T T T C T T C T G T G C

C G A A G C T C T T T T T C T T C T G T G C

C G A G A C T C T C C C G A C C T T A T G C

T G G G A T C T C C C G A C C T T A T G G

C G A G A T C T C C C G A C C T T G T G C

C G A G A C T C T T T T T C T T T T G T A C

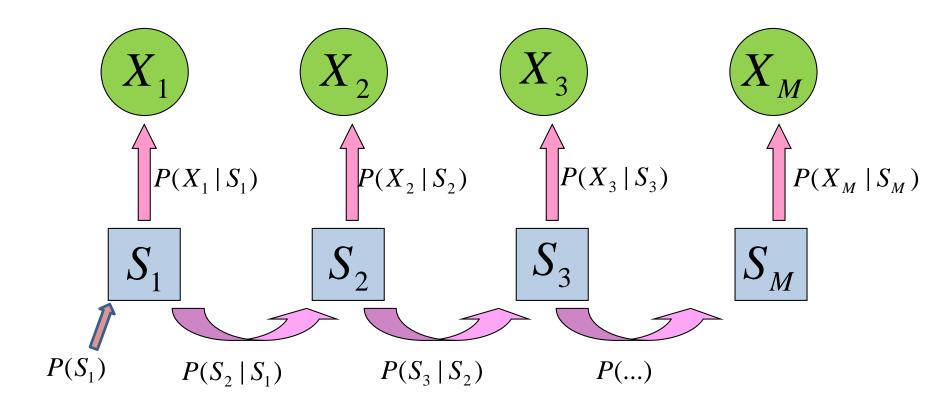
C G A G A C T C T C T C C G A C C T C G T G C

C G A G A C T C T C T C C G A C C T C G T G C
```

Implementation

- Markov model is used to model each haplotype, conditional on all others
- At each position, we assume that the haplotype being modeled copies a template haplotype
- Each individual has two haplotypes, and therefore copies two template haplotypes

Markov Model



The final ingredient connects template states along the chromosome ...

Possible States

- A state S selects pair of template haplotypes
 - Consider S_i as vector with two elements $(S_{i,1}, S_{i,2})$
- With H possible haplotypes, H² possible states
 - -H(H+1)/2 of these are distinct
- A recombination rate parameter describes probability of switches between states

$$- P((S_{i,1} = a, S_{i,2} = b) \rightarrow (S_{i+1,1} = a, S_{i+1,2} = b))$$
 (1- θ)²

$$- P((S_{i,1} = a, S_{i,2} = b) \rightarrow (S_{i+1,1} = a^*, S_{i+1,2} = b))$$
 (1-0)0/H

$$- P((S_{i,1} = a, S_{i,2} = b) \rightarrow (S_{i+1,1} = a^*, S_{i+1,2} = b^*)) \qquad (\theta/H)^2$$

Emission Probabilities

- Each value of S implies expected pair of alleles
- Emission probabilities will be higher when observed genotype matches expected alleles
- Emission probabilities will be lower when alleles mismatch
- Let T(S) be a function that provides expected allele pairs for each state S

Emission Probabilities

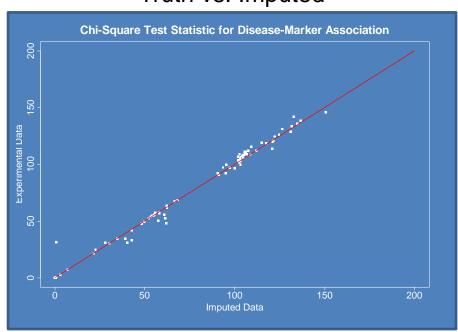
$$P(G_{j}|S_{j}) = \begin{cases} (1-\varepsilon_{j})^{2} + \varepsilon_{j}^{2}, & T(S_{j}) = G_{j} \text{ and } G_{j} \text{ is heterozygote,} \\ 2(1-\varepsilon_{j})\varepsilon_{j}, & T(S_{j}) \neq G_{j} \text{ and } G_{j} \text{ is heterozygote,} \\ (1-\varepsilon_{j})^{2}, & T(S_{j}) = G_{j} \text{ and } G_{j} \text{ is homozygote,} \\ (1-\varepsilon_{j})\varepsilon, & T(S_{j}) \text{ is heterozygote and} \\ & G_{j} \text{ homozygote,} \\ \varepsilon_{j}^{2}, & T(S_{j}) \text{ and } G_{j} \text{ are opposite homozygotes.} \end{cases}$$

Does This Really Work? Preliminary Results

 Used 11 tag SNPs to predict 84 SNPs in CFH

 Predicted genotypes differ from original ~1.8% of the time

 Reasonably similar results possible using various haplotyping methods Comparison of Test Statistics, Truth vs. Imputed



Does This Really Work?

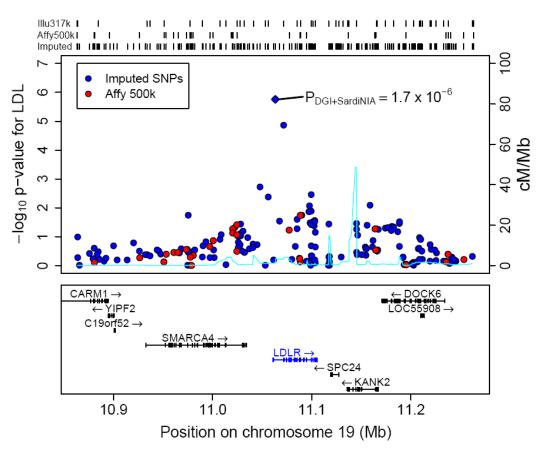
- Used about ~300,000 SNPs from Illumina HumanHap300 to impute 2.1M HapMap SNPs in 2500 individuals from a study of type II diabetes
- Compared imputed genotypes with actual experimental genotypes in a candidate region on chromosome 14
 - 1190 individuals, 521 markers not on Illumina chip
- Results of comparison
 - Average r² with true genotypes 0.92 (median 0.97)
 - 1.4% of imputed alleles mismatch original
 - 2.8% of imputed genotypes mismatch
 - Most errors concentrated on worst 3% of SNPs

Does this really, really work?

- 90 GAIN psoriasis study samples were re-genotyped for 906,600 SNPs using the Affymetrix 6.0 chip.
- Comparison of 15,844,334 genotypes for 218,039 SNPs that overlap between the Perlegen and Affymetrix chips resulted in discrepancy rate of 0.25% per genotype (0.12% per allele).
- Comparison of 57,747,244 imputed and experimentally derived genotypes for 661,881 non-Perlegen SNPs present in the Affymetrix 6.0 array resulted in a discrepancy rate of 1.80% per genotype (0.91% per allele).
- Overall, the average r² between imputed genotypes and their experimental counterparts was 0.93. This statistic exceeded 0.80 for >90% of SNPs.

LDLR and LDL example

LDLR locus and LDL cholesterol



Willer et al, *Nature Genetics*, 2008 Li et al, Annual Review of Genomics and Human Genetics, 2009

Impact of HapMap Imputation on Power

	Power					
Disease SNP MAF	tagSNPs	Imputation				
2.5%	24.4%	56.2%				
5%	55.8%	73.8%				
10%	77.4%	87.2%				
20%	85.6%	92.0%				

Power for Simulated Case Control Studies.
Simulations Ensure Equal Power for Directly Genotyped SNPs.

93.0%

96.0%

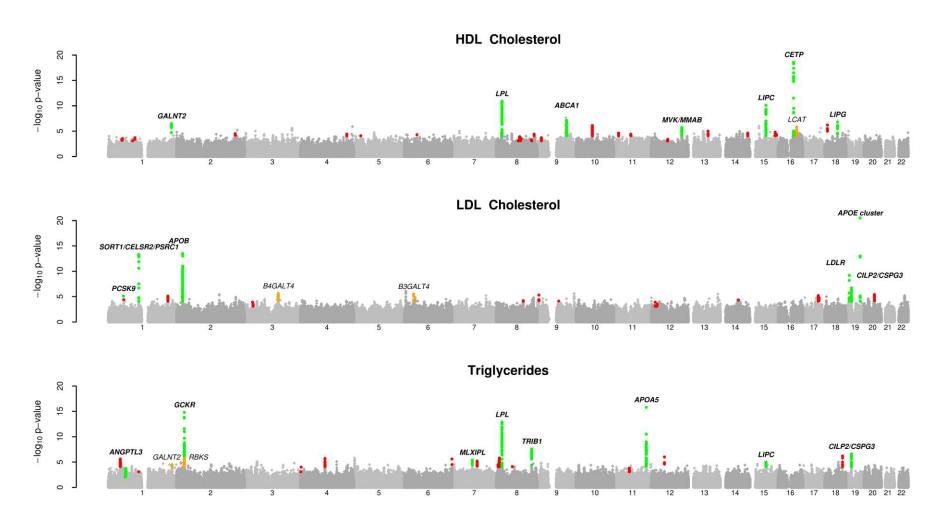
50%

Simulated studies used a tag SNP panel that captures 80% of common variants with pairwise $r^2 > 0.80$.

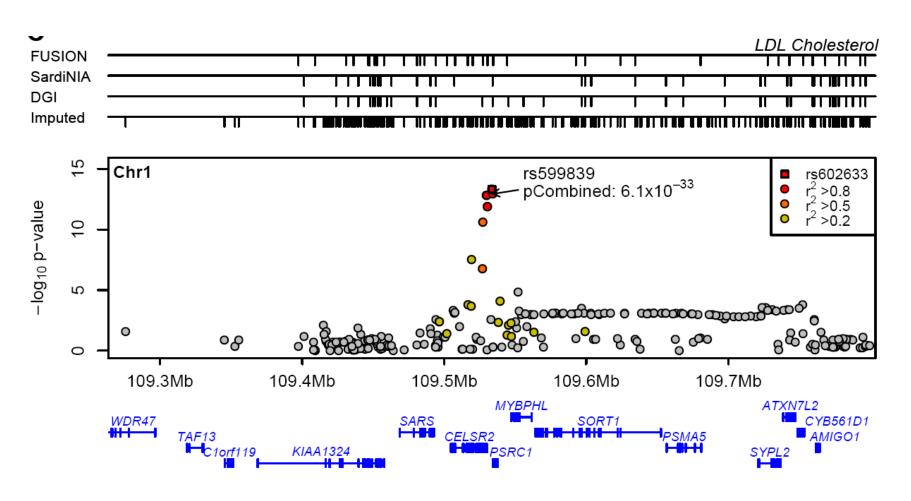
Combined Lipid Scans

- SardiNIA (Schlessinger, Uda, et al.)
 - ~4,300 individuals, cohort study
- FUSION (Mohlke, Boehnke, Collins, et al.)
 - ~2,500 individuals, case-control study of type 2 diabetes
- DGI (Kathiresan, Altshuler, Orho-Mellander, et al.)
 - ~3,000 individuals, case-control study of type 2 diabetes
- Individually, 1-3 hits/scan, mostly known loci
- Analysis:
 - Impute genotypes so that all scans are analyzed at the same "SNPs"
 - Carry out meta-analysis of results across scans

Combined Lipid Scan Results 18 clear loci!



New LDL Locus, Previously Associated with CAD



Comparison with Related Traits: Coronary Artery Disease and LDL-C Alleles

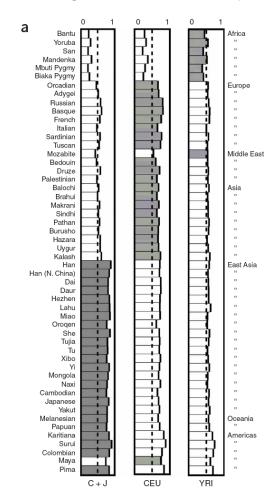
Gene	LDL-C p-value	Frequency CAD cases	Frequency CAD ctrls	CAD p-value	OR
APOE/C1/C4	3.0x10 ⁻⁴³	.209	.184	1.0x10 ⁻⁴	1.17 (1.08-1.28)
APOE/C1/C4	1.2×10^{-9}	.339	.319	.0068	1.10 (1.02-1.18)
SORT1	6.1x10 ⁻³³	.808	.778	1.3×10^{-5}	1.20 (1.10-1.31)
LDLR	4.2x10 ⁻²⁶	.902	.890	6.7×10^{-4}	1.29 (1.10-1.52)
APOB	5.6×10^{-22}	.830	.824	.18	1.04 (0.95-1.14)
APOB	8.3x10 ⁻¹²	.353	.332	.0042	1.10 (1.03-1.18)
APOB	3.1x10 ⁻⁹	.536	.520	.028	1.07 (1.00-1.14)
PCSK9	3.5x10 ⁻¹¹	.825	.807	.0042	1.13 (1.03-1.23)
NCAN/CILP2	2.7x10 ⁻⁹	.922	.915	.055	1.11 (0.98-1.26)
B3GALT4	5.1x10 ⁻⁸	.399	.385	.039	1.07 (0.99-1.14)
B4GALT4	1.0x10 ⁻⁶	.874	.865	.051	1.09 (0.98-1.20)

Comparison to data from WTCCC (Nature, 2007) was made possible by imputation.

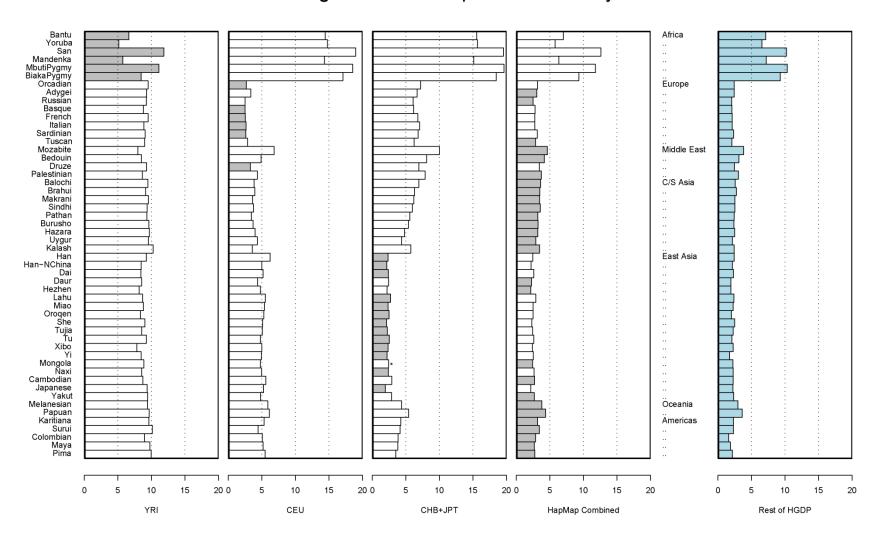
Does This Work Across Populations?

- Conrad et al. (2006) dataset
- 52 regions, each ~330 kb
- Human Genome Diversity Panel
 - ~927 individuals, 52 populations
- 1864 SNPs
 - Grid of 872 SNPs used as tags
 - Predicted genotypes for the other 992 SNPs
 - Compared predictions to actual genotypes

Tag SNP Portability



Percentage of Alleles Imputed Incorrectly



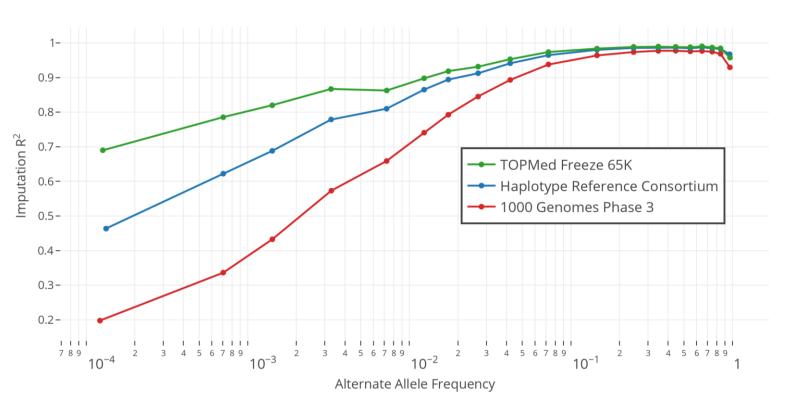
(Evaluation Using ~1 SNP per 10kb in 52 x 300kb regions For Imputation)

Summary

- Genotype imputation can be used to accurately estimate missing genotypes
- Genotype imputation is usually implemented through using a Hidden Markov Model
- Benefits of genotype imputation
 - Increases power of genetic association studies
 - Facilitates analyses that combine data across studies
 - Facilitates interpretation of results

2017 Imputation Accuracy: Europeans

(Complete Genomics as Truth)



Imputation https://imputationserver.sph.umich.edu

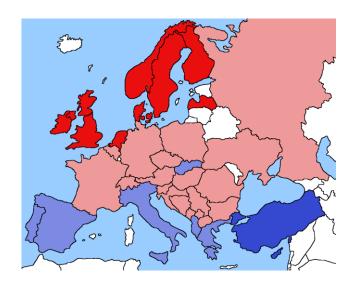
The easiest way to impute genotypes

Upload your genotypes to our server located in Michigan. All interactions with the server are secured.

and imputation.

Download the results.

All results are encrypted with a onetime password. After 7 days, all results are deleted from our server.



Recommended Reading

 Chen and Abecasis (2007) Family based association tests for genome wide association scans. Am J Hum Genet 81:913-926

• Li et al (2010) Using sequence and genotype data to estimate haplotypes and unobserved genotypes. *Genetic Epidemiology* **34**:816-834